Mixing of metals ejected by a supernova into the ISM

evgenii vasiliev

southern federal university rostov-on-don

mixing metals

2.5D gas dynamics + NEQ primordial chemistry + ray-tracing RT flat (Burkert) DM profile

M _{star}	M _{ei}	M _{met}	E _{sN}
25	~ 21	~ 2.1	10^{51}
40	~ 34	~ 8.2	$3 imes 10^{52}$
140	~ 140	~ 63	10^{52}
200	~ 200	~ 98.5	$5 imes 10^{52}$

Woosley & Weaver 1995

Heger & Woosley 2002

140 Msun, 10⁵² erg

EV et al 2012

10 Myr

0.15

0.1 0.05 0

0.4 0.35 0.3

0.25 0.2

1 Mvr5 Mvr

0.35

0.3 0.25

4.0

0.2 0.15 0.05 0 4.0 0.35 0.3 0.25

0.1

0

0.4 0.35 0.3 0.25 0.2

0.15

0.1 0.05

0.2

0.15

0.1 0.05

15 Myr

20 Myr

0

9

<u>re-collapse</u>

0

0.4 0.35 0.3 0.25 0.2 0.15 0.1

first SN: dependence on stellar properties

EV et al 2012

first SN: metallicity-density

maximum of gaseous mass - $[Z/Z_{sun}] \sim -3$

mixing efficiency

metal enriched gas

mixing efficiency f ~ 1 average metallicity Z ~ M_{metals}/M_{gas}

mixing efficiency

metal enriched gas

mixing efficiency f ~ 1 average metallicity Z ~ M_{metals}/M_{gas}

mixing efficiency f << 1

•••

average metallicity $Z \sim M_{metals} / M_{gas} / f$

f ~ 0.01

along LOS - rarely and small gaseous pockets with enhanced metallicity

timescale for complete mixing ~350 Myr for the Galactic SN rate

many explosions in massive galaxies more efficient mixing

a few explosions in dwarf galaxies less efficient mixing

SN in two-phase ISM: evolution

Korolev, EV et al , in prep

SN in two-phase ISM: covering factor

Korolev, EV et al , in prep

SN in two-phase ISM: metal-enriched gas

SN in two-phase ISM: density-metallicity

-1.5 -1 -0.5 0 0.5 1 lg(n), cm⁻³

lg(n), cm Korolev, EV et al , in pre

mixing metals in first minihalos is inefficient major part of a gas has [Z/Zsun] ~ -3 significant part has higher Z influence on further SF

mixing metals becomes more efficient in mass-loaded flows mixing takes place in smaller volume compact pockets of enriched gas high-Z absorption systems