Pulsational instability of rapidly accreting protostars during evolution toward supermassive black holes

K.Inayoshi (Kyoto University)

collaborators : T.Hosokawa (Tokyo University) K.Omukai (Kyoto University)

low-metallicity ISM @ Gottingen 12.10.2012

Introduction

Supermassive BH in the early universe

10¹¹

- Supermassive black holes (SMBH)
 - high-z universe (z>6 \sim 7)
 - very massive: $M_{BH} \sim 10^{8-9} M_{sun}$
- SMBH formation / growth time
 - gas accretion < Eddington rate</p>

$$t_{\rm gr} = 0.05 \ln \left(\frac{10^9 M_{\odot}}{M_{\rm ini}} \right) \text{Gyr}$$

 $(10^{10})^{10^{10}}$ See 10⁹ Hg 10⁸ 10^{8} 10^{7} 0 1 2 3 4 5 6 7 8 redshift

z>6

 $\sim 0.8 \ {
m Gyr} \gtrsim \ t_{
m H}(z=7)$ (PopIII BH; 100M_{sun}ightarrowSMBH)

We need shorten the formation time !

Solution : supermassive stars (>10⁵M_{sun}) \rightarrow seeds of SMBHs

Direct collapse scenario

- \cdot isothermal collapse (~8000K) by H cooling
- No efficient fragmentation (Bromm & Loeb 2003; Shang et al. 2010)

Supermassive stars (>10⁵M_{sun}) form and directly collapse to massive seeds of SMBHs

- Can supergiant protostars continue to grow stably ?
- If protostars are pulsationally unstable is mass loss !!

Stability analysis

Pulsational instability

mechanisms driving instability

- epsilon mechanism
 - nuclear burning (CNO cycle)
 - strong T dependence of nuclear-energy generation rate
- kappa mechanism
 - energy-flux blocking by the opacity bumps
 - ionization layer (H, He, He⁺) in the bloated envelope

Supergiant protostars could be unstable by

both the driving mechanisms

Estimation of mass-loss rate

- mass loss driven by pulsation (Appenzeller 1970)
 - surface velocity grows sound speed $\xi_{r,\mathrm{surf}} = c_\mathrm{s}/\sigma_\mathrm{R}$
 - maximum mass-loss rate

$$\frac{\dot{M}_{\rm loss}}{2}v_{\rm esc}^2 = \frac{\sigma_{\rm R}}{2\pi}W(M_*)$$

 $v_{
m esc}$: escape velocity

 $W(M_*)$: gain energy during one period

Ν

acceleration of outflow <= pulsation energy

• Work integral (in erg)

$$W(M_r) = \int_0^{M_r} \oint_{M_r} p dV dM_r$$
$$\pi \int_0^{M_r} \int_{M_r} \delta T^* (d - d)$$

$$= \frac{\pi}{\sigma_{\rm R}} \int_0^{M_{\rm T}} \Re \left[\frac{\delta T}{T} \left(\delta \epsilon - \frac{d}{dM_r} \delta L_{\rm rad} \right) \right] dM_r$$

Results

Result (1) : excitation mechanism

- The instability is driven in the He⁺ ionization layer
- Non-adiabatic effect → W=const (>0) → unstable

Result (2) : evolution of instability

- pulsational instability grows with increasing the stellar mass
- mass loss rate (~10⁻³ M_{sun}/yr) << accretion rate (~1 M_{sun}/yr)
- growth via accretion is not prevented by the mass loss

Result (3) : various \dot{M}_{acc} cases

- only highest accretion-rate case (1 M_{sun}/yr) is unstable
- lower accretion-rate cases are stable

Maximum mass

• The mass-loss rate (from result 2)

$$\dot{M}_{\rm loss} \sim 5.0 \times 10^{-4} \left(\frac{M_*}{100 \text{ M}_{\odot}} - 6 \right) \text{ M}_{\odot} \text{ yr}^{-1}$$

Maximum mass of supergiant protostars

 $\dot{M}_{loss} << \dot{M}_{acc} (growth)$ $\dot{M}_{loss} << \dot{M}_{acc} (growth)$

 $M_{max} \sim 2 \times 10^5 \, M_{sun}$

 $M_{*} = 10^{3} M_{sun}$

Supergiant protostars are expected to stably evolve into supermassive stars with $>10^5 M_{sun} \implies seeds of SMBH$

Summary

- We study the pulsational stability of rapidly accreting protostars
- Such protostars (=supergiant protostars) have the structure with the bloated envelope
- Supergiant protostars ($\dot{M}_{acc} \sim 1 M_{sun}/yr$) are pulsationally unstable by the κ mechanism in the He⁺ ionization layer
 - mass loss rate (~10⁻³ M_{sun}/yr) << accretion rate (~1 M_{sun}/yr)
 - protostars become more unstable with increasing the mass
- Supergiant protostars could grow in mass via rapid accretion and evolve to supermassive stars with >10⁵ M_{sun} (\rightarrow seeds of SMBH)

Danke schön !