Is molecular gas necessary for star formation?

Simon Glover & Paul Clark

- Good evidence that molecular gas and star formation are correlated in local galaxies
- An obvious hypothesis is that you need molecular gas in order to form stars.
- But why should this be the case? At typical GMC temperatures, H₂ provides no cooling
- Perhaps CO cooling is the vital ingredient?
- Alternatively, perhaps the hypothesis is wrong...

- In order to form stars, we need lots of cold, dense gas
- Clouds of cold, dense gas are also good places to form molecules
- This suggests that the correlation between molecular gas and star formation may be a coincidence
- We decided to test this idea with the help of numerical simulations

- Use detailed atomic/molecular cooling function, simplified chemistry
- Column densities for H₂ self-shielding, dust shielding determined using our new TreeCol algorithm (see Clark, Glover & Klessen 2012)
- Create sink particles at $n > 10^7 \text{ cm}^{-3}$

- 5 different simulations:
 - no shielding
 - no chemistry, gas remains atomic
 - H₂ chemistry, but no CO
 - H₂ and CO chemistry, hydrogen initially atomic
 - H₂ and CO chemistry, hydrogen initially molecular

Glover & Clark 2012a

- Presence of molecular gas has only very minor influence on ability of cloud to form stars
- On the other hand, ability of cloud to shield itself from interstellar radiation field (ISRF) appears to be crucial
- But clouds that are big/dense enough to shield themselves will be molecular!
- Suggests that the correlation between H₂ and star formation in local galaxies is a coincidence

- This study artificially switched-off the molecules, which obvious doesn't happen in reality
- Are there real systems where we might expect star formation without (much) molecular gas?
- Yes! We just need to look at low metallicity star forming regions...

 $Z = Z_{\odot}$

molecular ICs

🏲 molecular ICs

molecular ICs

molecular ICs

molecular ICs

 $\rm Z~=~0.03~Z_{\odot}$

 $\rm Z~=~0.01~Z_{\odot}$

0~0	$10 \ 20 \ 30 \ 40$ W _{co} [K km s ⁻¹]	

column density [cm

atomic ICs

atomic ICs

atomic ICs

 $Z = 0.03 Z_{\odot}$

 $Z = 0.01 Z_{\odot}$

10²⁰ 10²¹ 10²² 10

atomic ICs $Z = 0.1 Z_{\odot}$

 $\rm Z~=~0.03~Z_{\odot}$

 $\rm Z~=~0.01~Z_{\odot}$

 $Z = Z_{\odot}$

atomic ICs

atomic ICs

atomic ICs

molecular ICs

molecular ICs

molecular ICs

 $Z = 0.03 Z_{\odot}$

 $Z = 0.01 Z_{\odot}$

Z

- So far, we've only been considering dense clouds. Perhaps we need H₂ in order to form these clouds?
- To test this idea, we perform some simple one-zone models.
- Gas initially fully ionized, T = 10000 K.
 Follow cooling for one free-fall time, determine final temperature.
- Models take very little time to run, so we can explore wide range of density, UV field strength, metallicity

No molecular hydrogen

0.1 Z.

10⁻³ Z_o

With molecular hydrogen

0.1 Z.

 $10^{-2} Z_{\odot}$ 1 0.1 ISRF strength 0.01 0.001 10^{-4} 10^{3} 0.1 10 100 1 Number density (cm^{-3})

 $10^{-4} Z_{\odot}$

With H₂ and (approximate) self-shielding

Zo

$0.1 \ Z_{\odot}$

 $10^{-2} Z_{\odot}$ 1 0.1 ISRF strength 0.01 0.001 10^{-4} 10^{3} 0.1 10 100 1 Number density (cm^{-3})

 $10^{-4} Z_{\odot}$

Summary

- At Z > 0.01 Z_☉, molecular gas is not necessary for star formation: fine structure cooling and dust cooling are sufficient
- At Z < 0.01 Z_☉, H₂ cooling drives star formation provided UV field is weak (G₀/n < 0.01). Otherwise, cooling is very inefficient unless the gas can be driven up to high densities by gravity and/or turbulence