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Figure 5. Density projections in a cube of side length 10AU that show the evolution of the protostellar system. Each row corresponds
to a different minihalo. The time after the formation of the primary protostar increases from left to right. The final times vary since the
physical differences between the minihaloes also result in different runtimes. The density of hydrogen nuclei is weighted by the density
squared along the line of sight, which lies perpendicular to the plane of the disc. The disc around the primary protostar fragments into a
number of secondary protostars, most of which migrate towards the centre of the cloud. However, some also obtain angular momentum
from other protostars during close encounters and migrate to higher orbits. An example is the leftmost protostar at the last output time
in MH3. A more detailed analysis of this figure is presented in Section 3.3.

proaches should yield similar results, since the opacity of the
gas rises sharply at the accretion shock. The photosphere is
determined with a post-processing algorithm that finds the
spherically averaged radius at which the optical depth ex-
ceeds unity. In addition, we track the positions and proper-
ties of the protostars, which allows us to construct merger
histories. The relevant calculations are performed on particle
dumps (snapshots) that are output every ! 0.02 yr.

Starting from the first snapshot, we locate the densest
cell in the simulation with at least nH = 1019 cm−3. This cell
is defined as the centre of a new protostar, provided that the
distance to the centre of any other protostar exceeds the ra-
dius of the protostar as well as a predefined merger radius
rmerge, which we set to 0.1AU. The above density thresh-
old gives a good indication of when the collapse of the gas
stalls, a shock forms, and a new protostar is created. Since
the center of a new protostar must lie outside of all existing
protostars, our results are not very sensitive to this param-
eter. The above choice for the merger radius reliably identi-
fies when two protostars finally merge. We have found that
a significantly smaller value may suppress mergers, since the

centers of two protostars that merge do not necessarily move
to the exact same location, and a significantly larger value
may overproduce mergers, since protostars may overlap tem-
porarily on scales well below 1AU.

Once a candidate cell has been selected, we determine
the optical depth of Nang ! 104 nearly uniformly spaced
angular bins and Nrad = 200 logarithmically spaced radial
bins between 0.01 and 10AU centred on the candidate cell:

∆τj,k = ρj,kκj,k∆rk, (5)

where j denotes the angular bin, k the radial bin, ρj,k
the mass-weighted density of the bin, κj,k the Rosseland
mean opacity, and ∆rk the radial extent of the bin. For pri-
mordial gas in chemical and thermal equilibrium, which is
a good approximation since the density typically exceeds
nH = 1017 cm−3 in the protostars, the opacity is only a
function of density and temperature, and has been tabu-
lated by Mayer & Duschl (2005). We linearly interpolate
from their tables to determine the mean opacity of each bin
from the mass-weighted density and temperature of all cells
contributing to the bin.
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It was all so nice and simple...

• H2 is a poor coolant.

• Gas is hot during the formation of the first stars ~ 1000K

• Gas collapses quasi-statically, and only has ~1 Jeans mass.

• Steep density gradient so no fragmentation + cs3/G is big!

• Forms a single, massive star (> 100 M⦿?).

• Relatively simple prescription of star formation 
(compared to present-day star formation).  

• Enabled a quasi-analytic treatment of the re-
ionisation of the Universe and suppression of 
star formation in neighbouring halos.

Stacy, Greif and Bromm  (2010)

Old picture:



But then it got messy...

Clark et al. (2011a)

Primordial gas IS susceptible to fragmentation:

• H2 cooling is sufficient at high densities to allow gas to fragment and collapse locally.
• Just needs a “window of opportunity” - disc, turbulence, etc.
• Fragmentation seems to very efficient once it gets going.
• Can form a cluster with a broad range of stellar masses.
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Fig. 2.— The top panel shows the mass functions from those
Pop. III.1 simulations in which fragmentation occurs. In all cases
the mass function is plotted at the point at which the total mass
of gas converted to sink particles is 100M�. Note that as accretion
is ongoing, and the system is still young (t ⇠ 1000 yr), these will
often not be the final masses of the sinks. The mass functions in the
individual simulations di↵er substantially, although the combined
mass function, shown in the bottom panel, exhibits a broad and
flat distribution between masses of 0.4 and 20 M�.

a slightly subvirial configuration for our initial setup, to
ensure that the clouds are still able to collapse when
the turbulent motions are included. In addition to these
simulations, we also performed a second set of Pop. III.2
simulations that start with the same gas mass as in the
Pop. III.1 case (1000 M�). In this case, the Pop. III.2
simulations are initially more Jeans unstable than their
Pop. III.1 counterparts, and therefore might be expected
to fragment significantly more.

In our Pop. III.1 simulations, we set the initial frac-
tional abundances of H2, H+, HD and D+ to xH2 = 10�3,
xH+ = 10�7, xHD = 3⇥ 10�7 and xD+ = 2.6⇥ 10�12, re-
spectively. Our values for xH2 , xH+ and xHD are typical
of the values found at these densities in cosmological sim-
ulations of Pop. III.1 star formation (see e.g. Greif et al.
2008), and account for the fact that the HD/H2 ratio is
elevated over the cosmological D/H ratio of 2.6 ⇥ 10�5

(Molaro 2008) owing to the e↵ects of chemical fraction-
ation (Glover 2008). In the case of D+, fractionation
is unimportant at our starting temperature, and so we

simply set D+
/H+ = 2.6⇥10�5. In our Pop. III.2 simula-

tions, we adopt the same initial H+ and D+ abundances,
but set xH2 = 3 ⇥ 10�3 and xHD = 3 ⇥ 10�6, following
Greif et al. (2008). In both the Pop. III.1 and Pop. III.2
simulations, we assumed that all of the helium remained
neutral, and set the initial abundances of all of our other
tracked species to zero.

Within the BE spheres, we impose a turbulent veloc-
ity field that has a power spectrum of P (k) / k

�4. We
assume that the turbulence considered here has its ori-
gin in gravitationally driven flows that arise as the gas
and dark matter virialize in mini-halos (Wise & Abel
2007; Greif et al. 2008; Klessen & Hennebelle 2010).
As the gas is compressible in nature the turbulent ve-
locity field will have a power spectrum that is somewhat
steeper than the standard Kolmogorov (1941) descrip-
tion for incompressible flows. However, this deviation
is small and we note that the the ability of a cloud to
fragment is only weakly dependent on the power spec-
trum of the turbulence (Delgado-Donate et al. 2004).
The three-dimensional root-mean-squared velocity in the
turbulent field – which we will refer to as �vturb – is then
scaled to some fraction of the sound speed cs in the ini-
tial conditions. For the simulations presented here we
use four di↵erent rms velocities: 0.1, 0.2, 0.4 and 0.8 cs.
For an isothermal sound speed and an adiabatic index
of � = 5/3, the corresponding ratios of the turbulent
to thermal energy are given by 1/3(�vturb/cs)2, yield-
ing 0.0033, 0.0133, 0.0533 and 0.2133 respectively, for
our chosen values of cs. In order to focus on the e↵ects
of the turbulence, we do not include any ordered rota-
tion of the initial gas cloud. Note, however, that this
does not imply that the initial angular momentum of
the cloud is zero, since the imposed turbulent velocity
field gives the cloud a small amount of angular momen-
tum. Note that we only consider subsonic turbulence in
this study since our clouds have only a few Jeans masses,
and supersonic turbulence would unbind them. To study
the e↵ects of supersonic turbulence, one would have to
look at clouds that are initially more Jeans unstable than
those we study here.

The clouds in our study are all modeled using 2,000,000
SPH particles. Although this means that the mass res-
olution is higher in the 150 M� Pop. III.2 clouds than
in the other simulations, the Jeans mass at the point
where sink particles form is well resolved in every case
(see below). For this study, it is more important that the
turbulence in all simulations is evolved with the same res-
olution, hence our choice of a constant particle number
throughout.

Sink particles are created once the number density of
the gas reaches 1013 cm�3, at which point the gas has a
temperature of around 1200K. The corresponding Jeans
mass at this density and temperature is 0.08 M�. Our
mass resolution in the Pop. III.1 and the 1000 M� Pop.
III.2 clouds is 2Nneighmpart = 0.05 M�, where Nneigh is
the number of neighbors employed for force evaluations
(in our case 50), and mpart is the mass of an SPH par-
ticle. The 150 M� Pop. III.2 simulations have a mass
resolution of 0.008 M�. Once the candidate particle has
passed the criteria described in Bate et al. (1995), it is
replaced by a sink particle that can accrete gas parti-
cles that fall within its accretion radius racc, which we
fix at 20 AU. Note that this radius is significantly larger



SPH simulations - Cosmological ICs with Feedback?

Clark et al  (2011b):

Smith et al  (2011):

• Found that discs that surround the first 
protostar are extremely gravitationally unstable.

• Accretion luminosity feedback from the new 
protostars was unable to suppress fragmentation 
in the disc.

• In 100 yr, we form 4 protostars!

• Looked at larger scales, and longer timescales.

• Again found little influence of the feedback on 
the fragmentation properties.

• Simulations ran for 1000 - 10,000 yr

Accretion luminosity and fragmentation 3637

Figure 2. Column density projection of the centre of halo 1 just after the first burst of fragmentation simulated at our standard resolution and at 10 times higher
resolution. Feedback is present in both cases. The same number of fragments form in each case and in similar places.

Figure 3. Column density projection of fragmentation seen in the central 1300 au in the first few thousand years for haloes mh1 (top) and mh4 (bottom). Sink
particles are denoted by yellow squares. Despite the presence of accretion luminosity heating, there is still fragmentation.

C© 2011 The Authors, MNRAS 414, 3633–3644
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Greif et al.  (2011, 2012):

Different method of solving the fluid equations?
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Fig. 7.— The formation of a protostellar cluster at the center of the minihalos using standard sink particles. The panels show the density-
squared weighted number density of hydrogen nuclei projected along the line of sight. Black dots and crosses denote protostars with masses
below and above 1M!, respectively. The process of initial disk formation and fragmentation is remarkably similar in all minihalos (see also
Clark et al. 2011b), after which N-body effects become important and lead to relatively unique configurations. For example, in simulation
MH-4 dynamical interactions have led to the ejection of a low-mass protostar after only ! 50 yr. This occurs significantly later in the other
four minihalos.
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Fig. 11.— The protostellar mass function after 1000 years of continued fragmentation and accretion. The dark and light shadings
distinguish the mass functions obtained for standard and adhesive sink particles, respectively. Despite very aggressive merging, a small
cluster of protostars with a range of masses is formed even in the latter case. In the bottom right panel, we also show the cumulative mass
functions obtained by summing up the contributions from the individual minihalos, and renormalized for better visibility. The resulting
distribution is relatively flat between ∼ 0.1 and ∼ 10M!, indicating that most of the mass is locked up in high-mass protostars.

given by Martin et al. (1996), from which the three-body
formation rate is derived by applying the principle of
detailed balance (Flower & Harris 2007; Glover 2008).
These rates are intermediate in terms of the rates dis-
cussed in Turk et al. (2011), and their uncertainty is re-
flected in the substantial variation of the thermal and
morphological evolution of primordial gas clouds. In the
present study, we do not investigate how the collapse
of the gas is affected by our choice of the three-body
rate. However, we note that the rate used by Clark et al.
(2011b), taken from Abel et al. (2002), is significantly
smaller than the rate adopted here, and the fact that
we see qualitatively similar behavior in both simulations
gives us confidence that our main results do not depend
to any great extent on the choice of three-body rate,
although the quantitative details will likely have some
dependence on the choice of rate.
The cooling of the gas by H2 lines in the optically thin

regime is modeled with the low-density cooling rates for
collisions between H2 molecules and H and He atoms,
H2 molecules, protons and electrons (Glover & Abel
2008), accounting for the transition to local thermo-
dynamic equilibrium level populations at gas densities
nH ! 104 cm−3. At densities above nH ∼ 109 cm−3, the
strongest of the H2 ro-vibrational lines become optically
thick, reducing the effectiveness of H2 line cooling. To
account for this effect, we use an approach based on the
Sobolev approximation (Yoshida et al. 2006). We write
the H2 cooling rate as

ΛH2
=
∑

u,l

∆EulAulβesc,ulnu , (2)

where nu is the number density of hydrogen molecules in
upper energy level u, ∆Eul is the energy difference be-
tween this upper level and a lower level l, Aul is the spon-
taneous radiative transition rate for transitions between
u and l, and βesc,ul is the escape probability associated
with this transition, i.e. the probability that the emit-
ted photon can escape from the region of interest. We
fix nu by assuming that the H2 level populations are in
local thermodynamic equilibrium, and write the escape
probabilities for the various transitions as

βesc,ul =
1− exp(−τul)

τul
, (3)

where we use the approximation that

τul $ αulLs , (4)

where αul is the line absorption coefficient and Ls is the
Sobolev length (Yoshida et al. 2006). In the classical,
one-dimensional spherically symmetric case, the Sobolev
length is given by

Ls =
vth

|dvr/dr|
, (5)

where vth is the thermal velocity, and dvr/dr is the radial
velocity gradient. In our three-dimensional simulations,
we generalize this as (Neufeld & Kaufman 1993)

Ls =
vth

|∇ · v|
. (6)

To prevent the H2 cooling rate from being reduced by an
unphysically large amount in regions with small velocity
gradients, we limit Ls to be less than or equal to the local

• Used Arepo (Springel 2010).
• Found the same behaviour in the fragmentation properties of primordial gas.
• Note that the sink particles are also slightly different in this code.
• General IMF from all simulations is ‘flat’, from 0.1M⦿ up (same as Clark/Smith et...).



Hosokawa et al. (2012):

So when does the star formation end?

Fig. 2: UV radiative feedback from the primordial protostar. The spatial distributions of gas temperature
(left), number density (right), and velocity (right, arrows) are presented in each panel for the central
regions of the computational domain. The four panels show snapshots at times, when the stellar mass
is M∗ = 20 M" (a), 25 M" (b), 35 M" (c), and 42 M" (d). The elapsed time since the birth of the
primordial protostar is labeled in each panel.
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Fig. 3: Evolution of the accretion rate onto the primordial protostar. The blue line indicates the evolution,
which includes the effect of UV radiative feedback from the protostar. The red line indicates a numerical
experiment with no UV feedback. The open and solid circles denote the characteristic epochs of the
protostellar evolution, beginning of the KH contraction and the protostar’s arrival to the ZAMS. Figure
2, A to D, shows the snapshots at the moments marked here with asterisks.
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• 2D simulations show that radiative 
feedback can halt growth of central object 
once it reaches ~ 45 M⦿.

• Is this when star formation ends?

• Can we use this together with the IMF 
to get a final cluster mass (halo SFE)?



Imagine we have a standard 
power-law mass function:

The problem with flat mass functions...

log N

log M

Mfrag
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log M
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Cluster accretes
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Now imagine a flat mass 
function:
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Figure 5. The combined mass function of the sink particles formed in the five minihaloes 1000 and 2000 yr after the first sink particle forms. The solid red
lines show the mass function of the haloes with feedback and the dotted black line the haloes in the reference case without feedback. In both cases, the mass
function is flatter than the slope of the Salpeter IMF shown by a solid black line.

Table 2. The number of stars and time when the most massive star
in the minihalo had a mass of 10 M!. The plus sign next to the
number of fragments for the halo 3 reference run indicates that no
star reached 10 M! before the simulation was ended, meaning
that the number of fragments in this case is a lower limit. The
effects of ionizing radiation are expected to become important once
at least one star has reached a mass of 10–15 M! or greater, and are
likely to suppress further fragmentation. There is significant inter-
halo variation in both the number of fragments and the duration over
which accretion luminosity is the dominant feedback mechanism.
For equivalent haloes, the one which forms the massive star most
quickly has the least fragmentation.

Halo Ref. Feedback

No. of stars Time (yr) No. of stars Time (yr)

1 10 1520 10 2520
2 10 7640 7 4490
3 5+ 9430 5 5140
4 17 7320 5 1010
5 7 604 18 1440

Table 3. The number of stars and time when the most massive star in
the minihalo had a mass of 15 M!. A plus sign next to the number of
fragments denotes where a mass of 15 M! was not achieved before
the end of the simulation, and as such the number of fragments is
a lower limit. The results are similar to Table 2, but the times are
longer and there is more fragmentation.

Halo Ref. Feedback

No. of stars Time (yr) No. of stars Time (yr)

1 11 2910 16 6040
2 13 15 020 8+ 10 000
3 5+ 9430 6 11 270
4 20+ 22 360 6 3700
5 17 1060 23 3900

temperatures as low as 100 K (Ripamonti 2007; McGreer & Bryan
2008). When the gas was reheated by compression in the final stages
of the collapse, this smoothed out some of the small-scale structure,
resulting in less fragmentation. In the remaining three haloes, HD

cooling was not activated and so temperatures only as low as 200 K
were obtained via H2 cooling. In this case, the subsequent reheating
was less violent and more small-scale structure was retained. A
similar reduction in fragmentation has been seen in simulations of
Pop III.2 star formation due to reheating (Clark et al. 2011a).

The first panel of Fig. 6 shows the evolution of fragmentation
within the haloes. Haloes 1 and 5 fragment rapidly, meaning that
they quickly become dominated by chaotic dynamical interactions
and the reference and feedback cases are no longer equivalent.
Dynamical interactions are therefore as important as accretion lu-
minosity effects in haloes that fragment rapidly. For example, in
the run of halo 1 with feedback, there was a dynamical interaction
which ejected the most massive star before it could reach 10–15
M!, and consequently there was more time for fragmentation until
one of the originally lower mass objects reached this mass. Such
are the numbers of sinks formed within halo 5 that chaotic N-
body interactions cause the feedback and reference cases to swiftly
diverge. Consequently, no clear conclusions can be made about
the effect of feedback in halo 5 and its evolution is not shown in
Fig. 6.

Haloes 2 and 3 are more straightforward as these haloes fragment
and accrete material less vigorously. As fewer fragments are formed,
there is less competition to accrete the gas, which allows the first
fragments to grow in mass and substantially heat their surround-
ings. This delays when the fragmentation occurs in the feedback
case compared to the reference case. In Fig. 6, fragmentation in the
feedback case generally lags behind that in the reference case, and
in some cases the delay can be as great as a thousand years. This
was also true in halo 1 until the chaotic dynamics made the runs
diverge after a thousand years or so. The delaying of fragmentation
seems to be the major consequence of accretion luminosity feed-
back. This was also the conclusion reached in the protostellar disc
study of Clark et al. (2011a). Although feedback does not prevent
fragmentation, the delay means that there are fewer fragments when
ionizing feedback becomes effective, so in total, accretion feedback
has reduced the number of protostars formed.

Halo 4 is the case in which the maximal effect of the feedback
was seen. As in haloes 1 and 5, HD cooling was not activated
and 17 protostars were formed in the reference case. However,
with feedback the number of fragments formed before one of the
protostars reached 10 M! was reduced from 17 fragments to seven.

C© 2011 The Authors, MNRAS 414, 3633–3644
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

What do the simulations show....

Smith et al. (2011)

• Ran simulations until a star of ~ 10 M⦿ was formed.

• Chaotic: time taken can vary by factors of 5 or more.
• Mmax is a weak function of the cluster mass.
• IMF seems to be controlled by “fragmentation induced starvation” (Peters et al. 2010)



Can we grow the central object?

• Simulations of present-day massive star formation by Peters et al. (2010) find 
no evidence that ionisation terminates the accretion process? 

• Fragmentation induced starvation prevents Mmax growing beyond 25 M⦿.

• How can we reconcile this with the 2D Hosokawa et al. (2012) results?
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Figure 4. Early phase of disk instability in run B. The panels show slices of density, temperature, and the Toomre Q-parameter at four different times. Each frame
shows the simulation time and the mass of the most massive star in the cluster. The black dots indicate the positions of sink particles. One can see how the stellar
radiation initially heats up the disk locally, which enhances the stability. The dense filaments, however, shield the radiation, and the cold material within and behind
the filaments becomes unstable again.
(A color version of this figure is available in the online journal.)

(e.g., Beuther et al. 2005; Beuther & Henning 2009). However,
large-scale surveys, e.g., as conducted in the Cygnus-X region
(Motte et al. 2007), indicate that high-mass cores are in many
aspects similar to scaled-up versions of low-mass cores. We
followed these lines of reasoning and chose an initial density
profile with flat inner core and r−1.5 density profile outside a
radius of r = 0.5 pc. Although we begin with smooth rather

than turbulent initial conditions, by the time ionizing radiation
begins to be emitted, gravitational fragmentation has already
produced substantial density perturbations.

4.1.2. Rotation

The second important parameter is the initial rotation of this
core, which defines the total amount of angular momentum
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Figure 3. Disk growth and sink particle formation. The plot shows the mass
Mdisk of non-accreted gas contained in a control volume around the disk, the
mass Msinks of all sink particles and the total mass Mtot = Mdisk +Msinks for run
A (green), run B (blue), and run D (red). The disk mass in runs B and D is kept
almost constant by subsequent sink particle formation, while the disk in run A
continuously grows. The deviation between the disk masses in runs B and D at
late times is caused by ionization-driven outflows, but these do not affect the
total star formation rate.
(A color version of this figure is available in the online journal.)

temperature, and Q in the disk plane for four different times.
One can clearly see that the most unstable parts of the disk are
the filamentary structures that form as the disk grows in mass.
The heating by stellar radiation can suppress instability locally,
but shielding by the dense filaments prevents the whole disk
from becoming stable and restricts the heating to small regions
near the center of the disk that are surrounded by filaments. This
shielding makes it possible for star formation to progress radially
outward despite accretion heating by the stars. The disk remains
sufficiently cool at the inner edge for gravitational instability to
set in and star formation proceeds inside–out in the disk plane.
Hence, the effect of the filamentary structures in the disk is
twofold: they are so dense that they render the disk unstable
locally; and, because of their high density, they can effectively
shield the radiation from the stellar cluster near the center of the
disk, so that radiative heating does not stabilize the outer parts
of the disk. Indeed, high-resolution observations of high-mass
accretion disk candidates (Beuther et al. 2009) provide some
evidence for fragmentation and the presence of substructure on
∼1000 AU scales (as also proposed by Krumholz et al. 2007a).

Since the filaments that shield the outer parts of the disk
from radiation are optically thick, with an optical depth for non-
ionizing radiation of several tens, it is important to estimate
the degree to which our simulations, based on a ray-tracing
technique to propagate the radiation on the grid, are affected
by the lack of heating by diffuse radiation. To test this, we
use the adaptive-mesh radiative transfer program RADMC-3D.6
RADMC-3D is based on the standard Monte Carlo method of
Bjorkman & Wood (2001) in combination with Lucy’s method
of treating optically thin regions (Lucy 1999). It is the successor
of the RADMC code (Dullemond & Dominik 2004) and has
been used previously to generate maps of dust emission from
these simulations (Peters et al. 2010b). We have calculated self-
consistent dust temperatures of the simulation snapshot shown in

6 http://www.mpia.de/homes/dullemon/radtrans/radmc-3d/index.html

the last row of Figure 4. Assuming that dust and gas temperatures
in the disk plane are equal, we can compare the Monte Carlo
dust temperature with the simulation gas temperature, as shown
in Figure 5. The comparison demonstrates that direct heating
dominates over diffuse radiation in regions more than ∼500 AU
away from the stars. The diffusely heated regions lie completely
within the region heated in any case by direct radiation, so our
ray-tracing method accurately describes the shielding by the
filaments of the cold disk region where secondary fragmentation
proceeds.

To illustrate the tendency of star formation to occur at
increasingly larger disk radii, we show the disk radius at which
new sink particles form as a function of time for runs B and
D in Figure 6. Because the accretion heating sets in already
with the very first stars that form in run B, sink formation is
suppressed at small disk radii initially. The massive stars slowly
spiral outward with time, so that at t ≈ 0.67 Myr their radiation
can be shielded by filaments in the disk. Within these filaments,
the gas then cools until local collapse sets in and two sink
particles form near the center of the disk. Once the filament has
dissolved, the gas heats up again and no further sink particles
form in the inner disk region.

4. DISCUSSION

4.1. Initial Conditions

4.1.1. Density Profile

As we argue above, the fragmentation behavior of the disk
forming around the massive central star depends sensitively on
the initial and boundary conditions, i.e., on the physical proper-
ties of the high-mass cloud core. One of the key parameters that
determines whether fragmentation becomes widespread during
the collapse of a massive cloud core is its initial density profile.
Numerical simulations indicate that density profiles with flat in-
ner core are more susceptible to fragmentation, while centrally
concentrated cores (for example such as singular isothermal
spheres with ρ ∝ r−2) usually form only one or at most a few
objects (Girichidis et al. 2010).

The density structure of prestellar cores is typically estimated
through the analysis of dust emission or absorption using near-
IR extinction mapping of background starlight, mapping of
millimeter/submillimeter dust continuum emission, and map-
ping of dust absorption against the bright mid-IR background
emission (Bergin & Tafalla 2007). A main characteristic of the
density profiles derived with the above techniques is that they
require a central flattening. The density of low-mass cores is al-
most constant within radii smaller than 2500–5000 AU with typ-
ical central densities of 105–106 cm−3 (Motte et al. 1998; Ward-
Thompson et al. 1999). A popular approach is to describe these
cores as truncated isothermal (Bonnor–Ebert) spheres (Ebert
1955; Bonnor 1956), which often provides a good fit to the
data (Bacmann et al. 2001; Alves et al. 2001; Kandori et al.
2005). Bonnor–Ebert spheres are equilibrium solutions of self-
gravitating gas bounded by external pressure. However, such
density structure is not unique. Numerical calculations of the
dynamical evolution of supersonically turbulent clouds show
that transient cores forming at the stagnation points of con-
vergent flows exhibit similar morphology (Ballesteros-Paredes
et al. 2003; Klessen et al. 2005; Banerjee et al. 2009). The situa-
tion is less clear when it comes to high-mass cores (Beuther et al.
2007), because most high-mass cores studied to date show at
least some sign of star formation or turn out to consist of several
sub-condensations when observed with high enough resolution

Peters et al.  (2010)



Caveats

• Treatment of the radiation?

• Are we numerically resolved?

• Is our current treatment of the sink particles adequate?



H2 line cooling

• Currently, calculate a Sobolev length to find the opacity of the line.

τul = αulLsob Lsob  = vth / |∇⋅v| 

• Only really a good approximation in supersonic flows. 

• The disc around Pop III stars have transonic motions.

• Currently working on a better approach using the new TreeCol 
alogorithm (Clark, Glover & Klessen 2012).

Estimating column densities in astrophysical simulations 3

Figure 2. Schematic diagram illustrating the TreeCol concept.
During the tree walk to obtain the gravitational forces, the pro-
jected column densities of the tree nodes (the boxes shown on the
right) are mapped onto a spherical grid surrounding the particle
for which the forces are being computed (the “target” particle,
shown on the left). The tree already stores all of the information
necessary to compute the column density of each node, the posi-
tion of the node in the plane of the sky of the target particle, and
the angular extent of the node. This information is used to com-
pute the column density map at the same time that the tree is
being walked to calculate the gravitational forces. Provided that
the tree is already employed for the gravity calculation, the in-
formation required to create the 4⇡ steradian map of the column
densities can be obtained for minimal computational cost.

steradian map of the column density. By constructing this
map at the same time as the tree is being “walked” to deter-
mine the gravitational forces, we can minimize the amount
of additional communication necessary between CPUs hold-
ing di↵erent portions of the tree. Since the structure of the
tree, and how it is walked, will be important for our discus-
sion, we will first give a brief overview of how a tree-based
gravity solver works. For the purpose of this discussion, we
consider a solver based on an oct-tree, as used in e.g. the
Gadget SPH code (Springel 2005), although we note that
solvers based on other tree structures, such as binary trees,
do exist (e.g. the binary tree employed by Benz 1988, which
later found its way into other high profile studies, such as
Bonnell et al. 1998 and Bate et al. 2003). Also, although
we discuss the implementation in an SPH code, we stress
that this is only for convenience. The ideas discussed in this
paper are equally applicable to grid-based fluid codes that
employ a gravitational tree.

A tree-based solver starts by constructing a tree, split-
ting the computational volume up into a series of nested
boxes, or ‘nodes’. The ‘root’ node is the largest in the hi-
erarchy and contains all of the computational points in the
simulation. This large ‘parent’ node is then split up into
eight smaller ‘daughter’ nodes as shown in Figure 1. The
daughter nodes are further refined (becoming parents them-
selves) until each tree node contains only one particle (illus-
trated in Figure 1 by the blue dots). These smallest nodes
at the very bottom of the hierarchy are typically termed
‘leaves’. At each point in the hierarchy, the tree stores the
information about the contents of the parent node (includ-
ing its position, mass and size) that will be needed during
the gravitational force calculation. Once the construction of
the tree is complete, each particle is located in a leaf node
situated at the bottom of a nested hierarchy of other nodes.

Once the tree is built, it can then be “walked” to get
the gravitational forces. The idea behind the speed-up of-
fered by the tree gravity solver over direct summation is
simple: any region of structured mass that is far away can
be well approximated as a single, unstructured object, since
the distances to each point in the structure are essentially
the same. Strictly, this is only true if the angular size of the
structure is small, and so tree-codes tend to adopt an angle,
rather than a distance, for testing whether or not structures
can be approximated. This angle is often referred to as the
“opening angle” of the tree, and we will denote it hereafter
as ✓tol.

To walk the tree to obtain the gravitational force on
a given particle, the algorithm starts at the root node and
opens it up, testing whether the daughter nodes subtend
an angle of less than ✓tol. If the angle is smaller than ✓tol,
the properties of the daughter nodes (mass, position, cen-
tre of mass) are used to calculate their contribution to the
force. As such, any substructure within the daughter nodes
is ignored, and the mass inside in the nodes is assumed to be
uniformly distributed within their boundaries. If one or more
of these nodes subtends an angle larger than ✓tol, the nodes
are opened and the process is repeated on their daughter
nodes, and so on, until nodes are found that appear smaller
than ✓tol. To increase the accuracy of the force calculation,
the nodes often store multipole moments that account for
the fact that the node is not a point mass, but rather a
distributed object that subtends some finite angle (e.g. see
Binney & Tremaine 1987). These moments are calculated
during the tree construction, for all levels of the node hier-
archy except the leaves, since these are either well approxi-
mated as point masses – as is the case for a stellar N -body
calculation – or are SPH particles, which have their own
prescription for how they are distributed in space (Bate et
al. 1995).

The above method is sketched in Figure 1, which shows
the tree structure in black, and the nodes, marked in red,
that would be used to evaluate the gravitational force on
the large blue particle with the orange highlight. In the
cases where the nodes are leaves (containing only a single
particle), the position of the particle itself is used. As the
total number of force calculations can be substantially de-
creased in comparison to the number required when using
direct summation, tree-based gravity solvers o↵er a consider-
able speed-up at the cost of a small diminution in accuracy.
Barnes & Hut (1989) showed that for a distribution of N

self-gravitating particles, the computational cost of a tree-
based solver scales as N log N , compared to the N

2 scaling
associated with direct summation. They also showed that
the multipole moments allowed quite large opening angles,
with ✓tol values as large as 0.5 radians resulting in errors of
less than a percent.

2.2 Basic idea behind TreeCol

The TreeCol method makes use of the fact that each node
in the tree stores the necessary properties for constructing
a column density map. The mass and size of the node can
be used to calculate the column density of the node, and
its position and apparent angular size allow us to determine
the region on the sky that is covered by the node. Note also
that column density, just like the total gravitational force, is

c� 0000 RAS, MNRAS 000, 000–000

• Obtains column densities during the gravitational 
treewalk.

• Can calculate τ directly, by considering the column of 
material close to the line.

• See also work by Shingo Hirano on the treatment of 
the CIE opacities.



Is our fragmentation a result of poor resolution?
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Figure 4. Density-weighted projections (through the entire simulation domain) of the average density field in simulations J16 (left column), J32 (second column), and
J64 (third column) at fields of view of 300 pc (top row), 1 pc (middle row), and 1000 AU (bottom row).
(A color version of this figure is available in the online journal.)

further collapse. In the J32 and J64 runs, we see not only highly
irregular, spheroidal structure, but we see little to no evidence
for runaway gravitational instability at this time in the collapse;
in fact, the roughly spheroidal structure of the cloud suggests
that disk fragmentation at the ∼100 AU scale may be disfavored,
certainly until a later time.

4. MAGNETIC FIELD AMPLIFICATION

We infer magnetic field amplification above that arising
simply from the spherical compression of frozen-in field lines
during collapse by plotting the magnetic energy, EB = B2/8π ,
as a function of density for each of our four simulations
(Figure 6). Assuming a power-law relation between magnetic
energy and density, EB ∝ ρb, a spherical collapse would result
in b = 4/3. Any steeper values of b must result in additional
amplification in the form of a dynamo. We expect a small-
scale turbulent dynamo if there is significant kinetic energy in
turbulent motions. Figure 6 shows that for the best resolved
simulations, J64 and J128, the magnetic field scales with a
much higher power, b # 1.78, at all densities ρ ! 10−26,
approximately consistent with the findings of Federrath et al.
(2011). This increase can be seen in Figure 7, where we have
plotted density-weighted average projections of the magnetic

energy at the same fields of view as in Figure 5. By contrast,
the lower-resolution runs (J16 and J32) begin to show b > 4/3
behavior at the same density as the higher-resolution runs, but
never reach the same b as the higher runs and eventually begin
to show a shallower slope of EB with ρ at the highest densities
(ρ ! 10−15). In the outer part of the collapse, near the virial
radius, all runs show b # 4/3, suggesting that at low densities
the growth of magnetic energy is primarily due to the roughly
spherical collapse, though the data are somewhat scant.

4.1. Velocity Structure in the Collapse Region

The dynamo activity in the previous section is resolution
dependent, but robust above roughly 64 cells per Jeans length
(J64); that is, we continue to see more field amplification,
consistent with a minimum resolution requirement of between
32 and 64 zones per Jeans length. This is broadly consonant
with the results of Federrath et al., who find a similar resolution
cutoff in their simulations of magnetic field growth in the
nearly isothermal collapse of a Bonnor–Ebert sphere. In their
picture, the reason for this cutoff is the lack of sufficient power
in rotational motions when the Jeans length is resolved with
fewer than ∼30 cells. Our resolution requirement for strong and
sustained dynamo action appears to be about a factor of two
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Figure 5. Density-weighted projections (through the entire simulation domain) of the average molecular hydrogen mass fraction field in simulations J16 (left column),
J32 (second column), and J64 (third column) at fields of view of 300 pc (top row), 1 pc (middle row), and 1000 AU (bottom row).
(A color version of this figure is available in the online journal.)

larger, which could be due to our use of a considerably more
diffusive MHD solver (we use the HLL solver; they use HLL3R).
In order to solidify the connection between dynamo action
and the presence or absence of turbulent fluctuations, we first
consider projections of ω2 where ω = ∇ × v is the fluid vorticity
centered at the densest point in the computation (Figure 8). At
the 300 pc scale (Figure 8, top row), the vorticity is identical
among the four resolutions. However, zooming in to ∼1 pc,
there are already significant differences between all four runs.
For the other three, a trend is clear: increasing resolution creates
much larger regions of high vorticity that is indicative both of an
overall increase in the turbulent energy but also of a decreasing
coherence of the collapse region (see Section 3.3). Finally, at
1000 AU, the vorticity structure is completely different between
the ordered disk-like structure in J16 and J32 and the amorphous
turbulent core of J64. It is thus clear that as a function of
resolution, we see an increase in vorticity production and a
decrease in the characteristic scale of that vorticity at the smallest
scales within the collapsing core. These high-density regions
are just where magnetic energy growth with density begins to
fall off in low-resolution simulations. This correlation between
vorticity and magnetic energy is consistent with small-scale
dynamo action generated by incoherent velocity fields.

4.2. Magnetic Field Saturation

The kinematic, small-scale dynamo acts by twisting magnetic
field in a turbulent flow field. The random-walk character of the
flow will lead to a continuous stretching and thus strengthening
of the magnetic field. In a typical numerical model of the small-
scale dynamo, turbulence is driven in a fluid with a tiny seed
field; the field grows exponentially until it nears equipartition
with the turbulent velocity field, at which point the Lorentz force
reacts back on the fluid, leading to a strongly nonlinear coupling
between v and B which ultimately saturates the growth of the
magnetic field.

Here, the collapse timescale is decreasing with time, which
means that the computation reaches its end long before the
magnetic field reaches saturation. We stop each of our runs when
their peak density is ρmax $ 2.2×10−10, except for the J128 run,
which was terminated at ρmax $ 2.0 × 10−19 due to constraints
on computing time. Nevertheless, even in the J64 run, where
dynamo action is most vigorous, the kinetic energy exceeds
the magnetic energy in mass-weighted averages by a factor
of ∼3600.

The growth rate σ of the small-scale dynamo is a function
of the Reynolds number Re, the ratio of the advective timescale
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Can we rely on sink particles?

• Inclusion of sink particle breaks the fluid equations at the scale at which they 
accrete.

• However without them, cluster growth/dynamics is essentially intractable.

• Managed ~10 yr of evolution... Took about 3 months to run each sim!

• See the same basic fragmentation behaviour.

• Ejections and violent encounters are still common.

• Roughly 50 % of fragments merge.

• Picture is more complicated than the sink particle simulations suggest.
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Figure 5. Density projections in a cube of side length 10AU that show the evolution of the protostellar system. Each row corresponds
to a different minihalo. The time after the formation of the primary protostar increases from left to right. The final times vary since the
physical differences between the minihaloes also result in different runtimes. The density of hydrogen nuclei is weighted by the density
squared along the line of sight, which lies perpendicular to the plane of the disc. The disc around the primary protostar fragments into a
number of secondary protostars, most of which migrate towards the centre of the cloud. However, some also obtain angular momentum
from other protostars during close encounters and migrate to higher orbits. An example is the leftmost protostar at the last output time
in MH3. A more detailed analysis of this figure is presented in Section 3.3.

proaches should yield similar results, since the opacity of the
gas rises sharply at the accretion shock. The photosphere is
determined with a post-processing algorithm that finds the
spherically averaged radius at which the optical depth ex-
ceeds unity. In addition, we track the positions and proper-
ties of the protostars, which allows us to construct merger
histories. The relevant calculations are performed on particle
dumps (snapshots) that are output every ! 0.02 yr.

Starting from the first snapshot, we locate the densest
cell in the simulation with at least nH = 1019 cm−3. This cell
is defined as the centre of a new protostar, provided that the
distance to the centre of any other protostar exceeds the ra-
dius of the protostar as well as a predefined merger radius
rmerge, which we set to 0.1AU. The above density thresh-
old gives a good indication of when the collapse of the gas
stalls, a shock forms, and a new protostar is created. Since
the center of a new protostar must lie outside of all existing
protostars, our results are not very sensitive to this param-
eter. The above choice for the merger radius reliably identi-
fies when two protostars finally merge. We have found that
a significantly smaller value may suppress mergers, since the

centers of two protostars that merge do not necessarily move
to the exact same location, and a significantly larger value
may overproduce mergers, since protostars may overlap tem-
porarily on scales well below 1AU.

Once a candidate cell has been selected, we determine
the optical depth of Nang ! 104 nearly uniformly spaced
angular bins and Nrad = 200 logarithmically spaced radial
bins between 0.01 and 10AU centred on the candidate cell:

∆τj,k = ρj,kκj,k∆rk, (5)

where j denotes the angular bin, k the radial bin, ρj,k
the mass-weighted density of the bin, κj,k the Rosseland
mean opacity, and ∆rk the radial extent of the bin. For pri-
mordial gas in chemical and thermal equilibrium, which is
a good approximation since the density typically exceeds
nH = 1017 cm−3 in the protostars, the opacity is only a
function of density and temperature, and has been tabu-
lated by Mayer & Duschl (2005). We linearly interpolate
from their tables to determine the mean opacity of each bin
from the mass-weighted density and temperature of all cells
contributing to the bin.
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Summary:

• Fragmentation seems to be an unavoidable consequence of the 
collapse of purely primordial gas (but see Rowan Smith’s talk).

• The emerging mass spectrum of Pop III stars appears to be flat - 
but halo to halo differences are large. Will this persists as the cluster 
grows?

• Evidence that the accretion stops once the central source reaches 
~ 45 M⦿. Is that when star formation stops?

• Do we need smarter sink particles? 


