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It was all so nice and simple...

Old picture:

* H, is a poor coolant.

* Gas is hot during the formation of the first stars ~ 1000K

* Gas collapses quasi=-statically, and only has ~1 Jeans mass.
e Steep density gradient so no fragmentation + ¢:3/G is big!

* Forms a single, massive star (> 100 Mg?).
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* Relatively simple prescription of star formation an,
(compared to present-day star formation). | = N
* Enabled a quasi-analytic treatment of the re- =] =
ionisation of the Universe and suppression of | \ | |
star formation in neighbouring halos. - /"

Stacy, Greif and Bromm (2010)



But then it got messy...

Clark et al. (2011a)
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Primordial gas IS susceptible to fragmentation:

* Hz cooling is sufficient at high densities to allow gas to fragment and collapse locally.
* Just needs a “window of opportunity” - disc, turbulence, etc.

* Fragmentation seems to very efficient once it gets going.

e Can form a cluster with a broad range of stellar masses.



SPH simulations - Cosmological ICs with Feedback”?

Clark et al (2011b):

First stor forms (tg) ty + 27 yeors ly + 62 yeors

e Found that discs that surround the first \ ) £y
protostar are extremely gravitationally unstable. S

* Accretion luminosity feedback from the new il A e

protostars was unable to suppress fragmentation o
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in the disc. '

40 AU

* In 100 yr, we form 4 protostars! ——

t=400 yr t=750 yr t=2500 yr

Smith et al (2011):

* Looked at larger scales, and longer timescales.

1300 AU
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* Again found little influence of the feedback on ...
the fragmentation properties. E |

* Simulations ran for 1000 - 10,000 yr

1300 AU
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Different method of solving the fluid equations?

Greif et al. (2011, 2012):

MH-1 1100 AU

tep + 10 yr tep + 50 yr tse + 75 yr tep + 100 yr

MH-2 | 100 AU

—

tee + 10 yr tsp + 50 yr tep + 100 yr tep + 150 yr

MH-3 | 100 AU

tse + 10 yr tsp + 50 yr tse + 75 yr tep + 100 yr

e Used Arepo (Springel 2010).

* Found the same behaviour in the fragmentation properties of primordial gas.

* Note that the sink particles are also slightly different in this code.

e General IMF from all simulations is ‘flat’, from 0.1Me up (same as Clark/Smith et...).



SO when does the star formation end?

Hosokawa et al. (2012):

log T [K] logn [cm™]
e 2D simulations show that radiative 20 25 30 85 40 45 50 1129
feedback can halt growth of central object —
. s a * = ®
once it reaches ~ 45 Mae. t=0.013 Myr

¢ |s this when star formation ends!?

e Can we use this together with the IMF
to get a final cluster mass (halo SFE)?
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The problem with flat mass functions...

Imagine we have a standard Now imagine a flat mass
power-law mass function: function:

Cluster accretes
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What do the simulations show....

Smith et al. (2011)
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e Ran simulations until a star of ~ 10 Me was formed.
e Chaotic: time taken can vary by factors of 5 or more.

* Mmax is 2 weak function of the cluster mass.
* IMF seems to be controlled by “fragmentation induced starvation” (Peters et al. 2010)



Can we grow the central object?
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Peters et al. (2010)

 Simulations of present-day massive star formation by Peters et al. (2010) find
no evidence that ionisation terminates the accretion process!?

* Fragmentation induced starvation prevents Mmax growing beyond 25 Me.

* How can we reconcile this with the 2D Hosokawa et al. (2012) results?



Caveats

* Treatment of the radiation?
* Are we numerically resolved?

* |s our current treatment of the sink particles adequate!?



H2 line cooling

e Currently, calculate a Sobolev length to find the opacity of the line.

Tul = OlylLsob Lsob = Ven / [V-V]

* Only really a good approximation in supersonic flows.
* The disc around Pop lll stars have transonic motions.

e Currently working on a better approach using the new TREECoOL
alogorithm (Clark, Glover & Klessen 2012).

e Obtains column densities during the gravitational
treewalk.

* Can calculate T directly, by considering the column of
material close to the line.

* See also work by Shingo Hirano on the treatment of
the CIE opacities.



Is our fragmentation a result of poor resolution?

Turk et al. (2012)
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Can we rely on sink particles?

* Inclusion of sink particle breaks the fluid equations at the scale at which they
accrete.

* However without them, cluster growth/dynamics is essentially intractable.

MH3 MH3 MH3 MH3 MH3 MH3

0.02 yr 1.96 yr 391 yr 5.87 yr 7.82 yr 9.60 yr

Greif et al. (2012)

* Managed ~10 yr of evolution... Took about 3 months to run each sim!
* See the same basic fragmentation behaviour.

* Ejections and violent encounters are still common.

e Roughly 50 % of fragments merge.

* Picture is more complicated than the sink particle simulations suggest.



Summary:

* Fragmentation seems to be an unavoidable consequence of the
collapse of purely primordial gas (but see Rowan Smith’s talk).

* The emerging mass spectrum of Pop lll stars appears to be flat -
but halo to halo differences are large.Will this persists as the cluster
grows!

e Evidence that the accretion stops once the central source reaches
~ 45 Me. Is that when star formation stops?

* Do we need smarter sink particles?



