The impact of dust on interstellar gas

Stéphanie Cazaux Marco Spaans Vincent Cobut Paola Caselli Rowin Meijerink

The low-metallicity ISM: chemistry, turbulence and magnetic fields

Overview

Star form in clouds made of gas + dust

Catalyst: Enrich gas H_2 , H_2O , O_2 , H_2O_2

Reservoir: Stealing the gas Formation of ices

Impact of dust on the gas? Impact of dust on star formation?

Low metallicity? Traces of dust affect the chemistry?

Formation of H₂

Gas phase route:

 $H^- + H \rightarrow H_2 + e^-$

Grain surface route:

 H_2 in MW **NOT** explained by gas phase reactions :

Grain Gould & Salpeter 1963

H₂ formation dust >> gas

Reaction exothermic \rightarrow products gas

 H_2 formation dust VS gas with metallicity? Are traces of dust enough to form H_2 ?

Interstellar dust grains

DUST= Silicates, Amorphous carbon, PAHs PAHs = 50% of surface available for chemistry

Formation of H_2 on dust

 Interactions atom/surface Experiments: TPD Ab-initio calculations

2) Mobility on the surface

Simulations \rightarrow efficiency H_2 formation

Early Universe. For which Z_0 dust boosts the formation of H_2 ?

Interaction atom/surface: experiments

Experiments on graphite, amorphous carbon, silicates Pirronello et al. 1997, 1999, Zecho et al. 2002, Perets et al. 2007, Vidali et al. 2007

Interaction atom/surface: Density functional theory (DFT)

Interaction atom/surface: experiment

Graphite:

Chemisorption of H C puckered out of the basal plane associated with barrier ~ 0.2 eV. *Jeloaica & Sidis 1999 Sha & Jackson 2002*

Recent studies: Hoernekær et al. 2006 Rougeau et al. 2006 Bachellerie et al. 2007

Interaction atom/surface: experiment

Hornekaer 2006

Interaction atom/surface: experiment

• 1 atom sticks \rightarrow dust becomes catalyst \rightarrow H₂ formation barrier-less

Atoms get grouped as Dimers (2 atoms) Trimers (3) Hexamers (6) Binding energy increases with number of atoms

Grain surface chemistry: Monte carlo simulations

Atoms arrive randomly from gas phase

Flux= $n_x v_x \sigma (s^{-1})$ On the grid random walk UV + CR Evaporation Formation of molecules

Grain surface = grid Each point of the grid: site atom/molecule

Formation of H_2 on dust

Formation of H_2 and HD physisorbed atoms @ low T_{dust} chemisorbed atoms @ high T_{dust} clusters of atoms $\rightarrow H_2$ and HD high T_{dust}

H_2 and HD in the early Universe

First stars cooled by $H_2 \rightarrow very \text{ massive } \sim 100 M_{\odot}$

Stars cooled by HD few $\sim 10 M_{\odot}$

Amount of coolant available \rightarrow essential to star formation

```
H_2 and HD at low Z_0 dust VS gas?
```

 \rightarrow compute H₂ and HD formation during cloud collapse.

H_2 and HD in the early Universe

Cloud collapse with 1atom cm-3 @ z=10 Temperatures profiles depend on

- Adiabatic heating
- Cooling by H2 and HD (when no metals, Glover & Abel 200
- Cooling by fine structure line: (Meijerink & Spaans 2005)

H_2 and HD in the early Universe

Cazaux & Spaans 2009

H₂ and HD in the early Universe: Conclusions

• Traces of dust \rightarrow H₂ on dust grain most efficient route.

• H_2 produced \rightarrow HD forms through D⁺ + $H_2 \rightarrow$ Grain surface routes never dominate.

•Traces of dust boost H_2 which boost HD \rightarrow These coolants could impact star formation (Work in progress).

Formation of molecules on dust

Water is an important coolant of warm dense clouds (Neufeld 1995) Observed by Hershel in XDR

H_2O forms \rightarrow gas

- In warm environments $H_2 + O$
- Cold shielded cores $H_{3^+} / H_{3}O^+$ \rightarrow dust
- Several routes involving O, O, and O.

Formation of molecules on dust

Exothermic reaction \rightarrow product released in gas.

$H + H \rightarrow H_2$	60 %
$H + O \rightarrow OH$	30 %
$OH + H \rightarrow H_2O$	90 %
$H_2 + O \rightarrow OH + H$	0 %
$H_2 + OH \rightarrow H_2O + H$	0 %
$0 + 0 \rightarrow 0_2$	60 %
$O + O_2 \rightarrow O_3$	50 %
$H + CO \rightarrow HCO$	80 %

Derived from exp (Dulieu et al. 2012)

Formation of molecules on dust: Monte carlo simulations

Atoms arrive randomly from gas phase

Diffuse clouds

Photo-dissociation regions

PDR: H molecular T_{dust} =30K, T_{gas} =30K, G_0 =10³, Av=5 nH=1000 cm⁻³, O/H =3 10⁻⁴, D/H=2 10⁻⁵

 H_2O forms with O_2 and O_3

Formation of molecules on dust

Cold grains (~10 K) favours hydrogenation

Warmer grains (30 K) favours oxygenation

UV photons **dissociate** species that **recombine**. "dissociation-formation-dissociation" boost gas phase.

Species released in gas \rightarrow photo-dissociated. Boost VS photo-dissociation?

Star formation

How does dust (and metallicity) impact SF?

MHD simulations: Flash

gas phase + dust chemistry

Star formation

Initial cloud conditions: 10³ cm⁻³ Isothermal: Tgas =Tdust=20K 10 chemical species Gas phase: 40 reactions Dust: H, and H,O

gas only

Star formation Include cooling and heating mechanisms Extend the chemical network (dust + gas) Chemical desorption (3) **H2** Н \mathbf{O} Accretion (1 Surface diffusion (2) **H2O** CO H₂CO Fragmentation of Molecular cloud Dust impact fragmentation/ SF efficiency and IMF.

Summary and Conclusions

H₂ formation on dust involves:

H weakly bound to the surface.

H strongly bound to the surface and making pairs (or groups).

Traces of dust (10⁻⁵ Z₀) are enough to form H₂. H₂ forms on dust \rightarrow boost HD through D⁺ + H₂

Other molecules forming on dust \rightarrow release in the gas if exothermic reactions \rightarrow direct impact on the gas (coolants).

Hydrodynamic simulations + dust / gas chemistry + cooling \rightarrow Star formation varies with Z_o (scales with dust).