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Textbook ISM:
• gas resides in distinct 
smooth stable phases
•hot phase has large 
volume filling factor 
(fvh > 50%)
•phase transitions in 
pressure equilibrium
Observations:
• filaments, frothy at 
high resolution; struc-
ture on all scales
→ turbulence
• wide range of tempe-
ratures, densities (fvh < 
30%)
• gas, magnetic fields, 
cosmic rays, dust …
→ multicomponent

Dieter Breitschwerdt (TU Berlin) - ISM Workshop Göttingen, 9.10.2012

Credit: ESA/NASA/JPL (2012)

Combined Herschel/Spitzer image of LMC
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Interstellar Turbulence

✤ Reynolds Number is high: Re = u L/ν ∼ 3 103 M L [pc] n [cm-3] , i.e. 
105 - 107 (Elemegreen & Scalo, 2004); M=u/c … Mach number

✤ ISM is highly turbulent and compressible! (v. Weizsäcker 1951)

✤ Possible driving sources:
✤ stellar: HII regions, stellar winds, supernovae (SNe), superbubbles
✤ galactic differential rotation
✤ self-gravity: Jeans instability, thermal instability
✤ plasma instabilities: Rayleigh-Taylor, Kelvin-Helmholtz, 

magnetorotational instability (MRI), cosmic ray streaming etc.
✤ SNe dominate energy input in spirals (MacLow & Klessen 2004):   

� ≈ 3× 10−26
�ηSN

0.1

�� σSN

1SNu

��
HD

100pc

�−1 �
RSF

15kpc

�−2 �
ESN

1051erg

�
erg cm−3 s−1

Dieter Breitschwerdt (TU Berlin) - ISM Workshop Göttingen, 9.10.2012
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Turbulence I
✤ Reynolds-number: Re=u L/ν ~105 - 107

✤ Nonlinearity (u∇)u in Navier-Stokes-Eq.

take curl and write as a function of vorticity ω:

                                             ;
and since 
                                                                   
we have

∂�ω

∂t
= ∇× [�u× �ω] + ν∆�ω

∇× [�u× �ω] = (�ω ·∇)�u− (�u ·∇)�ω

Change of
vorticity:

change of moment of inertia by
stretching of fluid element (b)

viscous torque due to 
applied viscous stresses (a))

Dieter Breitschwerdt (TU Berlin) - ISM Workshop Göttingen, 9.10.2012
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Incompressible
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“Eddies” are blobs 
of vorticity
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Turbulence II

Large Eddy Simulation of isotropic 
turbulence in a periodic box;
shown are contours of vorticity

3D-Simuation of a laboratory jet in non-reactive gas, Re ~21000 (2D projection)
Credit: D. Glaze (Purdue University ); arrows: velocity field

Direct Numerical Simulation of isotropic 
turbulence (s.a.); Re ~1200  (cf. Davidson)

• Turbulence: essentially a 3D chaotic solution of NS-Eq., but 
   has large number of degrees of freedom
• Stretching of fluid elements causes increase in vorticity 
  ➔ “vortex tubes”

Dieter Breitschwerdt (TU Berlin) - ISM Workshop Göttingen, 9.10.2012
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Turbulence III

Spectral energy density E(k) in Kolmogorov turbulence

✤ Turbulence model: Kolmogorov (1941, K41), 
for incompressible turbulence (∇u=0)

✤ Assumptions for large Re: 
✤ (i) turbulence on small scales is 
     statistically isotropic ➔ universal 
✤ (ii) statistics on small scales is exclusively  

determined by ν and εD=ρu2/τ (dissipation)  
✤ Richardson: energy cascade from large to 

small eddies
✤ Large eddies generated by instability ➔ 

break-up into smaller eddies ➔ kin. energy 
rate per unit mass εK=u2/τ= u3/l=const. 
(“turn-over time”: τ=l/u) ➔ u ~ l1/3 (ρ~const.)

✤ ➔ observed in clouds: σ~L0.38 (Larson, 1981)
✤ Energy input on large scales; cascade driven 

by inertial forces, viscous stresses negligible 
for large eddies (“inertial range”)

~ k-5/3

Dieter Breitschwerdt (TU Berlin) - ISM Workshop Göttingen, 9.10.2012

L >> l >> η

✤ Energy dissipation on micro-scale η ➔ 
viscous forces dominate: Re=uη/ν ~         
~(εK/ρ)1/3 η4/3/ν ~1 ➔ η ~ (ν3/εK)1/4

✤ u ≡ v ~ ν/η = (νεK)1/4

✤ Energy dissipation rate εD = εK, indepen-
dent of Re and l! 1/2 <ui ui>=∫ E(k) dk

✤ Dimensiononal analysis: 
✤ [k]=1/L, [E(k)]=L3 T-2, [εD]=L2 T-3             

(iii) E(k) = f(k,εD) = C εD2/3  k-5/3

✤ C is a universal constant! 
✤ structure function (of order n):

intermittence at 
very small scales

self-
similar 
flow
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Turbulence IV

Spectra of v and u for compressible and incompressible 
(MHD) turbulence (Kowal & Lazarian 2007); α=0.23 ➔ 
k5/3 E(k) ~ k-2α ~ k-0.46

✤ Compressible Turbulence model: v.Weizsäcker 
(1951), Fleck (1996)

✤ Assumptions: 
✤ (i) no magnetic field
✤ (ii) no self-gravity
✤ (iii) scale-invariant density fluctuations 

(“clouds”) obey a hierarchy of scales on 
subsequent levels ν: 

     0≤α≤1: compressibility, ρν … average density, 
     3α … number of dimensions for compression
✤ (iv) α essentially the same on all levels
✤ energy transfer in a statistical steady state in 

terms of energy density (Lighthill 1955), i.e. 
ρεK=ρ u3/l=const. ➔ u ~ (l/ρ)1/3 

✤ ➔ ρ1/3 u ~l1/3 ≡ v

✤ Set of scaling relations:

✤ fractal dimension: D=3-3α
✤ transformation to K41 (v~l1/3) by 

v≡ρ1/3 u (density weighted velocity, 
Kritsuk et al. 2007) ➔ restoring the 2nd 
order velocity structure function

✤ α=0.15 (Kritsuk et al. 2007)

Dieter Breitschwerdt (TU Berlin) - ISM Workshop Göttingen, 9.10.2012
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ISM Simulations I: Large Scales

✤ Goal: simulate whole galaxies
✤ 3D SPH (Dobbs et al. 2011)
✤ fixed gravitational potential, 

including spiral arms 
✤ heating & cooling, self-gravity
✤ no magnetic fields
✤ energy source due to star formation 

(SF), efficiency 5 - 40%
✤ UV photon background field
✤ maximum mass resolution: 2500 

Msol  (larger than Jeans length)
✤ focus on clouds, cold gas
✤ for T>5000 K, n ~ 10-3 cm-3: Δl ~ 300 

pc: too large for studying 
turbulence and gas phase 
transitions Evolution of column density (Dobbs et al. 2011, MNRAS;  

courtesy Claire Dobbs)
Wednesday, October 10, 2012



★ Mesoscale ISM simulations: sufficiently large to cover integral scale, 
sufficiently small to resolve gas phases distributions (Δx=0.5 pc or less)

★ Solve full 3D HD/MHD equations on a large grid: 1 kpc × 1 kpc × ± 10 kpc 
★ Type Ia,b,c/II Supernovae random + clustered in disk 
★ Background heating due to diffuse UV photon field (Wolfire et al. 1995)
★ Thermal conduction including saturation (Dalton & Balbus 1993)
★ Gravitational field by stars + self-gravity
★ SFR ∝ local density/temp.: n >10 cm-3/T<100 K
★ Generate stars according to an IMF
★ Formation and motion of OB associations (➔ random velocity of stars)
★ Fully time-dependent non-equilibrium ionization (NEI) structure
★ Evolution of computational volume for τ ~ 400 My 
★ ➔ sufficiently long to erase memory of initial conditions!
★ 3D calculations on parallel processors with adaptive mesh refinement 

(AMR) grid code

ISM: Numerical Simulations II

Dieter Breitschwerdt (TU Berlin) - ISM Workshop Göttingen, 9.10.2012
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HD-Evolution of ISM 

y

x
✤ Collective effect of SNe induces 

break-out of ISM disk gas  ➔ “gal-
actic fountain” (cf. intermediate vel-
ocity clouds) ➔ reduce disk pressure

✤ Density and temperature distribu-
tion shows structures on all scales  
(cf. observation of filaments)

✤ shear flow due to expanding SNRs 
generates high level of turbulence ➔ 
coupling of scales 

✤ Cloud formation by shock compres-
sed layers ➔ clouds are transient 
features ➔ generation of new stars

✤ large amount of gas in thermally 
unstable phases 

✤ volume filling factor of HIM ~ 20%
✤ no pressure equilibrium! 

Avillez & Breitschwerdt, 2010

Dieter Breitschwerdt (TU Berlin) - ISM Workshop Göttingen, 9.10.2012
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2D cuts through 3D data cube (disk cut)

σ

n P/k T

σ … SN rate
Dieter Breitschwerdt (TU Berlin) - ISM Workshop Göttingen, 9.10.2012

σ=1

σ=4
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★ Pressure far from uniform: spatial variation even 
for high SN rate (σ/σgal = 4)

★ <P/k> ~ 3000 for Milky Way, i.e. less than 
canonical values of  > 10,000

★ Reason: due to fountain flow, average disk 
pressure can be lowered

★ lots of small scale structure: filaments 
★ shock compressed layers ➔ cloud formation
★ lower volume filling factor for HIM: fV ~ 0.2
★ lots of gas in thermally unstable regions

Results

Dieter Breitschwerdt (TU Berlin) - ISM Workshop Göttingen, 9.10.2012
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★ fV fairly const. with time for t > 200 Myr
★ Reason: break-out of SBs and galactic foun-

tain flow acts as pressure release valve!
★ fV of hot gas is fairly low!
★ in agreement with HI holes in external 

galaxies 

Results II: Volume filling factors
σ/σg fcold fcool fwarm fhot

   1 0.19 0.39 0.25 0.17
   2 0.16 0.34 0.31 0.19
   4 0.05 0.3 0.37 0.28
   8 0.01 0.12 0.52 0.35
  16 0 0.02 0.54 0.44

cold: T<103 K; cool: 103 <T< 104 K
warm: 104 <T< 105.5 K; hot: T>105.5 K

★ increase in SN rate: 
★ fV of hot gas still not dominating!
★ fV of cold gas decreases substantially

Avillez & Breitschwerdt 2004 

Dieter Breitschwerdt (TU Berlin) - ISM Workshop Göttingen, 9.10.2012
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Results III: Probability Density 
Functions (PDFs) Avillez & Breitschwerdt, 2009

✤ PDF gives probability to find a fraction f(x) of gas in given density/pressure regime 
✤ For X∈{ρ,P}) we have:
✤ In a SN driven ISM the distribution is very broad ➔ substantial fraction of gas exists 

outside “phases”, i.e. in thermally unstable regions!

P (a ≤ X ≤ b) =

� b

a
f(x)dx

Time-dependent evolu-
tion of the averaged vo-
lume weighted density 
and pressure PDFs in 
the ISM over 4 x 108 yr

Note: shock waves pro-
pagating through gas;

broad pressure distri-
bution

Wednesday, October 10, 2012



MHD-Evolution of ISM I

Avillez & Breitschwerdt, 2005a

Outflow not inhibited by B-Field; lines of force 
drawn out by disk-halo flow ➔ loop structure 

Dieter Breitschwerdt (TU Berlin) - ISM Workshop Göttingen, 9.10.2012
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MHD-Evolution of ISM II
nAvillez & Breitschwerdt, 2005a

B-field // to disk cannot prevent outflow into 
halo; Halo density is inhomogeneous (Fountain)

Which pressure determines ISM dynamics? 
• For T < 200 K: magnetic pressure dominates, 
• for 200 K < T < 106 K ram pressure dominates,
• for T>106 K thermal pressure dominates

Dieter Breitschwerdt (TU Berlin) - ISM Workshop Göttingen, 9.10.2012
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★ Heiles (2001) reports that > 47% of  WNM is in a classically unstable phase 
between 500 – 5000 K

★ Our simulations show that in total 40% of ISM mass is unstable
★ 500 < T < 5000 K: ~ 55% of the gas is unstable
★ T > 105.5 K: ~10% is unstable

★ Does this contradict classical thermal stability theory (Field, 1965)?
★ Not necessarily, because

★ stability of “phases” was derived in a time-asymptotic limit:
★ instability means that cooling time << dynamical time scale
★ stable points determined by properties of interstellar cooling curve

★ However, in a time-dependent dynamical picture things can be different 
(e.g. Kritsuk & Norman 2002, Gazol et al. 2001)
★ SN increased turbulence can work against condensation ➔ turbulent 

transport of energy (cf. heat conduction in the solar chromosphere)
★ eddy crossing time << cooling time

Stability of “Phases” (I)

Dieter Breitschwerdt (TU Berlin) - ISM Workshop Göttingen, 9.10.2012
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★ Field criterion does not take into account turbulent dynamics
★ Turbulent diffusion can stabilize, inhibiting local condensation modes (cf. 

solar chromosphere), transporting energy to cooling regions: νturb ~ Re νmol
★ Thermal instability inhibited, if fluctuations occur on time scales less than 

the cooling time: τeddy << τcool 

★ values for WNM: ε~10-26 erg cm-3 s-1, n~0.3 cm-3, T~1000 K, Λ0 ≈ 1.9 10-27 
erg cm3 s-1 K-1/2: λ < 1019 cm ➔ thermal instability inhibited on parsec scales

★ compressible turbulence: strong dependence on α in “Fleck-model”:

★ compressibility decreases critical length, because cooling time decreases 
faster than turn-over time; α ~ 0.1: λ ~ l0-0.4 T1.75 ; α = 0: λ ~ T0.75

Stability of “Phases” II

τeddy ∼ λ

∆u
∼

�ρ
�

�1/3
λ2/3 <

kBT

nΛ(T )

⇒ λ <

�
kBm̄

Λ0

�3/2 �1/2

ρ2
T 3/4 ,Λ(T ) = Λ0T

1/2

Dieter Breitschwerdt (TU Berlin) - ISM Workshop Göttingen, 9.10.2012

λ <

�
3

2

�
�V
ρ40

�1/3 m̄kBT 1/2
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l−4α
0

�3/(2−12α)

(incompressible turbulence)

(compressible turbulence)
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★ WNM in the thermally unstable 
temperature regime (500 - 1500 K) 
shows filamentary structure 

★ classically there should be no (or 
only very little) gas observable!!!

★ distribution on small scales (~ pc)
★ ➔ agreement with HI observations 

by Heiles (2001), Heiles & Troland 
(2003)

Stability of “Phases” III

Avillez & Breitschwerdt (2005b)

WNM in the thermally unstable regime: 
631 K ≤ T ≤ 1585 K

Dieter Breitschwerdt (TU Berlin) - ISM Workshop Göttingen, 9.10.2012
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★ ISM turbulence is generated by shear 
flows ➔ increases vorticity

★ largest eddies break up at a turn-over 
time τ ~ l/Δv ➔ energy fed in at large 
scale

★ Richardson (1922): 

★ 2nd order structure function (measure 
for Ekin contained in eddie of size r)

★ integral scale ~ break-up scale of 
superbubbles

At which scale is turbulence 
generated?

<S2(r)> flattens at r ~ 75 pc: integral scale
Fleck (1996): Sp(r ) ~ vp ~ lp/3 ➔S2(r)~l2/3

Avillez & Breitschwerdt (2006)

“Big whorls have little whorls 
that feed on their velocity, and 
little whorls have lesser whorls 
and so on to viscosity”

S2(r) =
�
(∆v)2

�
=

�
[ux(�x+ r�ex)− ux(�x)]

2
�

Dieter Breitschwerdt (TU Berlin) - ISM Workshop Göttingen, 9.10.2012

1

2

�
�u2

�
=

� ∞

0
E(k)dk ,

1

2

�
�ω2

�
=

� ∞

0
k2E(k)dk
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Non-equilibrium ionization 
(NEI) structure of ISM (I)
✤ optically thin hot plasmas: continuum + 

line spectrum (ne < 104 K: coronal approx.)
✤ collisional ionization equilibrium (CIE): 

ionization by collisions (3-body process) is 
balanced by radiative recombination ➔ no 
detailed balancing, because atomic time 
scales are different

✤ plasma is driven out of CIE ➔ non-equili-
bium ionization (NEI) structure, e.g. 
Kafatos (1973), Shapiro & Moore (1976), 
Stone & Norman (1993) etc.

✤ particularly striking effect: fast adiabatic 
cooling like in a galactic fountain or wind 
(Breitschwerdt & Schmutzler, 1994) 

CIE NEI

Böhringer 1998

+
-

-

-
Top: CIE vs. NEI plasma emission codes; in CIE, plasma 
emission can be calculated (in coronal approx., i.e. ne < 104 
cm-3) once and for all if ne, Te and Z are given; in NEI Z + 
astrophysical model for dynamical evolution is required!
Left: Animation of collisional ionization by electrons

radiative recombinationcollisional ionization
Dieter Breitschwerdt (TU Berlin) - ISM Workshop Göttingen, 9.10.2012
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★ CIE: ionization fractions x of O depend only on temperature T (for given Z) 
➔ sharply peaked ➔ convenient diagnostic tool for determining T

★ NEI: x depends on dynamical and thermal history of plasma ➔ more diffi-
cult to fit spectrum, but: evolution of plasma can (in principle) be inferred!

CIE

Böhringer 1998

Breitschwerdt & Schmutzler 1999

NEI

Example: ionization structure of 
oxygen in  CIE and NEI

Dieter Breitschwerdt (TU Berlin) - ISM Workshop Göttingen, 9.10.2012
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NEI structure of ISM (II)

✤ Flow changes ρ and T
✤ this modifies ionization structure
✤ which in turn modifies cooling function      
Λ(T,Z)

✤ which changes outflow
✤ ➔ Time-dependent Cooling Function

✤ Modelling: use 10 most abundant elements
✤ 3D hydrodynamics (parallelized with AMR) 

with a highest resolution of 0.5 pc
✤ include most important processes: electron 

impact ionization, excitation auto-ionization, 
radiative and dielectronic recombination, 
charge exchange reactions, continuum 
(bremsstrahlung, free-bound, 2-photon) and 
line emission 

Top: 3D high resolution NEI simulation,  cut through 
galactic midplane (at solar circle), after evolution time t= 
400 Myr

Avillez, Breitschwerdt, Manuel (2011)

Dieter Breitschwerdt (TU Berlin) - ISM Workshop Göttingen, 9.10.2012
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NEI structure of 
ISM (III)

✤ CIE cooling curves are no longer valid → cooling 
depends on the thermal and dynamical history 
of the plasma, i.e. distribution of ionization stages

✤ Ionization structure varies from place to place 
and with time → multitude of different cooling 
functions: Λ = Λ(r,t; T, Z)

✤ delayed ionization: plasma is underionized due to 
slow ionization of neutral plasma → typical for 
cold plasmas collisionally ionized by shocks

✤ delayed recombination: plasma is overionized due 
to slow recomb. of high ionization stages → 
typical for very hot cooling plasmas 

✤ NEI cooling curves of cooling down plasma 
below CIE since deficiency of outer electrons for 
line emission

✤ X-ray observations of diffuse hot plasma show 
signs of delayed recombination

Top: Midplane cut of NEI simulations marking regions of 
different temperatures: 105.5 K (F-J), 106 K (K-O) 
Bottom: Cooling curves of different places with different 
initial temperatures; dotted line is CIE and and dashed line 
is NEI of an initially  completely ionized plasma 46Dieter Breitschwerdt (TU Berlin) - ISM Workshop Göttingen, 9.10.2012

4 5 6 7
log T [K]

-24

-23

-22

-21

lo
g 
Λ

N
 [e

rg
 c

m
3  s

-1
]

CIE
NEI
F
G
H
I
J

To = 105.5 K

4 5 6 7
log T [K]

CIE
NEI
K
L
M
N
O

To = 106 K

Wednesday, October 10, 2012



NEI structure of 
ISM (IV)

✤ NEI spectrum: 
✤ saw-tooth emission line structure
✤ soft X-ray emission at kinetic temperatures as 

low as 25,000 K!!!
✤ NEI emission at 0.3 keV higher at T=104 K than 

CIE emission at 106 K
✤ CIE emission at 0.3 keV for T=104 K negligible
✤ NEI spectrum unique, as it reflects the thermal 

and dynamical history of the plasma

Top: NEI simulation of free-bound emission of a plasma 
initially at temperature 106 K located at sites K-O 

Dieter Breitschwerdt (TU Berlin) - ISM Workshop Göttingen, 9.10.2012

-32

-30

-28

-26

-24

-22

O7+

C6+

C5+

C5+

C5+
Ne7+

Ne7+

Ne7+

S7+

Ne6+
Fe8+

Fe8+

Fe8+

Mg10+

O6+

O6+

O6+

O7+
Si5+

Si5+

Si5+

Fe9+

Fe9+

Fe9+

S7+
Mg6+

Mg6+

Si6+

Fe10+

Fe10+

Mg8+

Mg6+

Si6+

Ne6+

S7+

N6+

Fe7+Ne6+

Si6+

Fe10+

C6+N6+

Mg7+

Mg7+

CIE - T=106.2 K
NEI
CIE

-32

-30

-28

-26

-24

-22

Lo
g 

dP
/d
λ 

/ n
e2  [

er
g 

cm
3  s

-1
 A

]

0 10 20 30 40 50 60 70 80 90 100
λ [A]

-32

-30

-28

-26

-24

-22 T = 104.0 K

T = 104.4 K

T = 104.8 K

Ne5+

Mg7+

Fe7+

Ne5+

Fe7+
Ne5+

Mg7+

Mg7+

Avillez & 
Breitschwerdt 2012

Wednesday, October 10, 2012



Modeling soft X-ray 
emission from the ISM 

✤ Generating an ISM model and follow time-dependent 
evolution of ions (NEI) ➔ integrate spectrum along line of sight

✤ Binning of high-resolution unabsorbed synthetic (model) 
spectrum into e.g. EPIC pn channels (for XMM-Newton)

✤ Folding spectrum through detector response matrix

✤ Fitting synthetic spectrum in XSPEC (X-ray spectral fitting 
routine) to observational data

✤ Comparing with observed spectrum and iterate outflow model 
if necessary until convergence

Treating observed and synthetic spectrum equally! (Breitschwerdt 2003)

Procedure:

Dieter Breitschwerdt (TU Berlin) - ISM Workshop Göttingen, 9.10.2012
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★ OVI traces cooling down HIM
★ OVI produced in turbulent 

mixing layers!
★ 70% of OVI in NEI below 105 K, 

i.e. well below the CIE value!!!

Comparison to Observations I: OVI

• OVI temperature distribution in the ISM;  
    shown are values 103.8 < T(OVI) < 106.1 K
    highest n(OVI) densities in cool clumpy 
    regions
• Zoom into bubble shows turbulent mixing

Avillez & Breitschwerdt (2012)

Dieter Breitschwerdt (TU Berlin) - ISM Workshop Göttingen, 9.10.2012
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★ FUSE & Copernicus data of OVI 
absorption lines towards back-
ground stars

★ Comparison with NEI simulations: 
spatially averaged (red and blue 
curves) and single LOS of N(OVI) at 
different angles and at different times 

★ N(OVI) converges to an average 
value of 1.3 - 1.4 10-8 cm-2

★ FUSE observations for |z|≤ 150 pc: 
N(OVI) ~ 1.3 10-8 cm-2 (Bowen et al. 
2008)

★ dispersion of N(OVI) ~ const. ➔ 
clumpy distribution along LOS

Comparison to Observations II: OVI

N(OVI) density in the ISM as a function of LOS
Dieter Breitschwerdt (TU Berlin) - ISM Workshop Göttingen, 9.10.2012

Avillez & Breitschwerdt (2012c)
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Comparison to Observations III: 
Electron distribution

Top: NEI simulation of electron density
Left: Electron density derived from 
measurements of 75 pulsars for ⎪z⎪< 200 pc, 
with 200 pc < d < 8 kpc; Result: log(ne) = 
-1.47±0.02,  σ=0.17±0.02 
Right: Histograms (solid line) and Gaussian fits 
(dashed line) from dispersion measures of NEI 
simulations taken at different times from 350 - 
400 Myr; log(ne) = -1.4 to -1.38, σ=0.16 - 0.21 

Avillez, Asgekar, Breitschwerdt, Spitoni (2012)

Dieter Breitschwerdt (TU Berlin) - ISM Workshop Göttingen, 9.10.2012

Observations NEI-Model

✤ Study electron density distribution ne in solar 
neighbourhood in NEI

✤ Simulations in good agreement with pulsar dispersion 
measures (DM=∫ne dl) for ⎪b⎪< 5º; <ne>=DM/d

✤ ne distribution is lognormal: <ne>=0.04±0.01 cm-3 
✤ Reason: Maximum entropy principle, central limit 

theorem
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✤ Electron distribution ne is different for NEI, as the 
ionization structure, and hence the number of free 
electrons is different

✤ Pulsar dispersion measures (mean, minimum and 
maximum) are in good agreement with observations 
(from ATNF catalogue with distance measurements)

✤ ne remains almost constant with distance
✤ 80% of ne by mass in thermally unstable region (200 < 

T < 103.9); WNM filling factor 4-5% (Gaensler et al. 
2008) Avillez, Asgekar, Breitschwerdt, Spitoni (2012)

Dieter Breitschwerdt (TU Berlin) - ISM Workshop Göttingen, 9.10.2012

Top: NEI simulation of gas 
density (including Local Bubble 
and Loop I)
Left: time averaged dispersion 
measures (mean, minimum and 
maximum) over a period of 50 
Myr, 501 snapshots taken at 0.1 
Myr intervals
Right: electron density as a 
function of distance (blue crosses: 
pulsar observations)

Comparison to Observations IV: 
Electron distribution
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Summary
✤ ISM is a highly turbulent, compressible medium ➔ nonlinear dynamics requires high 

resolution numerical simulations
✤ Simulations require: 

✤ (i) sufficiently long evolution time to erase “memory” effects of initial conditions 
✤ (ii) inclusion of essential physical processes; still missing: detailed chemistry, radiation 

transport, cosmic rays, differential rotation, galactic dynamo ...  
✤ (iii) observables should be independent of resolution

✤ SN-driven ISM shows structures on all scales (coupling by turbulence)
✤ High level of turbulence maintained by on-going star formation
✤ “Galactic Fountain” acts as pressure release valve in the disk ➔ reduces volume filling 

factor of hot “phase”
✤ ISM not in pressure equilibrium (average pressure lower in agreement with observation) 
✤ “Clouds” are shock compressed layers, in which new stars are born 
✤ Large mass fraction in thermally unstable regime
✤ OVI-distribution due to turbulent mixing ➔ in good agreement with FUSE- and 

Copernicus data 
✤ Dynamical and turbulent ISM drives plasma out of ionization equilibrium (NEI) ➔ inter-

stellar cooling function depends on plasma history and hence varies in space and time
✤ Electron density distribution lognormal (ne=0.04±0.01 cm-3) consistent with pulsar obs.
✤ Closest to Earth SN: ~ 2.2 Myr. at ~ 85 pc distance (derived from fit to 60Fe data)
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Thank you for your attention!

“The only part of the Universe which isn’t 
expanding is the budget for this place.”

Dieter Breitschwerdt (TU Berlin) - ISM Workshop Göttingen, 9.10.2012
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