The Effects of X-ray Irradiation on Star Formation and Black Hole Growth

Ayçin Aykutalp Scuola Normale Superiore, Pisa

Collaborators: John Wise (Georgia Tech.), Marco Spaans (Kapteyn), Rowin Meijerink (Kapteyn)

Outline

Black holes

Application

Conclusions

Black Holes

Many galaxies contain BHs : $M_{BH} \sim 10^{-3} M_{bulge}$ (Magorrian et al. '98), $M_{BH} \sim \sigma^4$ (Ferrarese & Meritt '00).

'04).

0

Black Holes

- Ø SMBHs of 10⁹ M_☉ exist even at $z \sim 6$ (Fan et al. '03, Kurk et al. '07).
- ✓ Formation of the seed BHs:
 1) Stellar seed BHs(M_{BH} ~ 10² M_☉, Volonteri et al. '03, Johnson & Bromm '07)

2) Singular collapse (M_{BH} ~ 10^{4-6} M_{\odot}, Bromm & Loeb '03, Spaans & Silk '06).

- BHs produce UV (90%) and X-ray (10%) radiation.
- Thermodynamics of the gas in the inner region of an AGN is dominated by the X-ray radiation produced by the infall of gas onto the central BH (Wada et al. '09, Perez-Beaupuits et al. '11).
 - ➡ Important for the Magorrian relation.

X-rays produce fast e⁻ --> lose their energy through Coulomb interactions

Secondary Ionizations Dominate --> important for H, H₂ and He

- X-rays ionize and drive the ion-molecule chemistry, hence the H₂ formation.
- X-rays couple to metals due to high cross-section.
- Ø High opacity of metal-rich gas
 ➡ Large energy deposition rate (~ H_X/n_H)

Proof of Concept

- Include X-ray chemistry by porting XDR code (Meijerink & Spaans '05): dust & ion-molecule chemistry, heating, cooling (escape probability for lines); pre-computed tables in n_H, N_H, F_X, and Z/Z_☉ (176 species, more than 1000 reactions).
- Employ Moray (Wise et al. '12): UV and X-ray radiation transport (polychromatic spectrum) around the seed BH.
- XDR (metallicity dependent) + Enzo non-equilibrium chemistry (9 species) run in parallel.

The We perform 2 simulations for minihalos with metallicities of $Z/Z_{\odot} = 1$ and 0.

 ${\it @}$ Massive black hole with a mass of 5x10⁴ M_{\odot} at z=15.

The We perform 2 simulations for minihalos with metallicities of $Z/Z_{\odot} = 1$ and 0.

O Massive black hole with a mass of 5x10⁴ M $_{\odot}$ at z=15.

Enclosed Gas Mass

X-ray induced H II region

Velocity magnitude slices

Effects of Metals

Temperature vs density

In solar metallicity case, lower temperatures and higher densities are reached, due to efficient cooling.

At z=14.17, H II region is also formed in solar metallicity case but with a delay of 17 Myr.

Effects of Metals

Temperature vs density

In solar metallicity case, lower temperatures and higher densities are reached, due to efficient cooling.

At z=14.17, H II region is also formed in solar metallicity case but with a delay of 17 Myr.

Application

Consider singular collapse scenario for UV backgrounds of 10³ J₂₁ (low) and 10⁵ J₂₁ (high), where J₂₁=10⁻²¹ erg cm⁻² sr⁻¹ s⁻¹ Hz⁻¹. Turned on at z=30.

Ø Introduce seed MBH M=5 x 10⁴ M_☉ at z=15.

Consider singular collapse scenario for UV backgrounds of 10³ J₂₁ (low) and 10⁵ J₂₁ (high), where J₂₁=10⁻²¹ erg cm⁻² sr⁻¹ s⁻¹ Hz⁻¹. Turned on at z=30.

Ø Introduce seed MBH M=5 x 10⁴ M_☉ at z=15.

- Star formation recipe based on H₂ fraction (> 5 x 10⁻⁴) turned on at z=30 on.
- BH accretion: Eddington limited spherical Bondi-Hoyle (Kim et al. '11 prescription).
- SN feedback, metal enrichment followed.
- H₂ self-shielding included (Draine & Bertoldi '96 prescription).

Application

H₂ fraction

Metal enrichment

X-ray flux

X-ray vs radius color coded for metallicity X-ray vs radius color coded for mass

X-ray flickering

 10^{0} 10^{-1} 10^{-2} X-ray flux (erg 10^{-3} 10^{-4} cm^{-2} 10^{-5} s-1) 10^{-6} 10^{-7} 10^{-8}

X-ray flickering

Accretion rate

High UV bg case: $10^5 J_{21}$

Low UV bg case: $10^3 J_{21}$

Black hole growth

Conclusions

- X-rays important & metals boost X-ray opacity --> heating.
- X-ray feedback/BH growth is self-regulating.
- Weaker 10³ J₂₁ UV background allows Pop III star formation and subsequent enrichment of the medium.
- Ø For low UV bg, 10^5 M_☉ MBH grows at 10^{-3} M_☉/yr, doubles
 in mass in Edd. time (usual suspects for SMBHs at z=6).
- Singular collapse scenario does not yield SMBHs at z=6 for 10⁵ J₂₁ UV background.
- Interesting for slowly evolving dwarfs today, unless there is later time UV weakening and/or metal enrichment.