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The time evolution of the density probability distribution function (PDF) is formulated and solved in the free-fall approximation.
We demonstrate that a pressure-free collapse results in a power-law tail on the high-density tail of the PDF, with the slope quickly
asymptoting to the functional form PDFM (ρ) ∝ ρ−0.54 for the mass-weighted PDF and PDFV (ρ) ∝ ρ−1.54 for the volume-weighted one.
Comparison of observed column density PDFs with those derived from our model suggests that observed star-forming cores are roughly
in free-fall.
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Introduction

The density PDF is a powerful tool for analysing
astrophysical systems; in both non-gravitating
and strongly self-gravitating systems, it reveals
key aspects of the underlying physical processes.
For supersonic non-gravitating turbulent gas in
an isothermal environment the density PDF is
log-normal (Vazquez-Semadeni 1994, Padoan et
al. 1997). When self-gravity becomes impor-
tant, the probability of finding dense regions
increases and a power-law tail develops on the
high-density side of the PDF (Klessen 2000, Slyz
et al. 2005, Collins et al. 2012). The den-
sity PDF can be used to evaluate key aspects of
star formation, like the efficiency and the stel-
lar initial mass function (IMF) (Krumholz 2005,
Padoan et al. 1997, Hennebelle, Chabrier 2008,
Federrath, Klessen 2012).
We develop a model for the evolution of the den-
sity PDF, based on free-fall collapse. We start
with the initial density PDF of a gaseous sys-
tem, not specifying its spatial structure, nor how
it evolved to this state. We then apply the free-
fall analysis directly to the density PDF.

Analytic Collapse Model

We start with the free-fall collapse of a sphere
that obeys

d2r

dt2
= − GM

r2
= − 4πGρ0r

3
0

3r2
. (1)

Transformation to dimensionless quantities us-
ing ζ = r/r0 and τexact = t/tff gives

τexact =
2

π

(
arccos

√
ζ +

√
ζ(1− ζ)

)
(2)

(e.g., Hunter 1962, Tohline 1982). An analytic
approximation for ζ(τ) can be obtained by set-
ting

τ =

√
1− ζa/2. (3)

Equation 3 deviates least from the exact solu-
tion (equation 2) if we substitute a = 3.2233.
Assuming the mass in the sphere, M =
4π/3 ρ(t)r(t)3, to be constant during the col-
lapse, equation (3) gives

ρ(τ) = ρ0

(
1− τ2

)−6/a
. (4)

With this equation, we can now explicitly
compute the density as a function of time
starting with an initial density ρ0.

Time Evolution of the PDF

For free-fall from rest, the density is a mono-
tonic function of time, i.e., evolutionary paths
of differnent initial densities do not cross. We
can use this to derive an analytic description for
the time evolution of the density PDF:
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The area of a bin on this plot stays constant over
time, and so

PDFV (t1) = PDFV (t0)
∆ρ0

∆ρ1
. (5)

Starting with an arbitrary but fixed ∆ρ0 at time
t0, the value for ∆ρ1 at time t1 can be calculated
from the analytic function for ρ(t).
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High-density Tail

We now make use of the simple approximation
for ρ(t) (equation 3), to derive the time evolu-
tion of the density PDF and, in particular, we
focus on the high-density part. After some alge-
bra, we end up with

lim
ρ→∞

d log PDFV
d log ρ

= −a
6
− 1 = −1.54. (6)

Hence, at late times the tail of the PDF
has a universal slope, independent of the
slope of the initial PDF, provided this is
finite.

-8

-6

-4

-2

0

2

-4 -3 -2 -1 0 1 2 3 4 5

lo
g
P
D
F

log (ρ/ρpeak)

fit: PDFV (ρ) ∝ ρ−1.52

fit: PDFM (ρ) ∝ ρ−0.52

Variations from Free-fall

Collins et al. (2011) performed simulations of
magnetised clouds, finding slopes ranging from
µ = −1.64 to −1.80, steeper than in the purely
hydrodynamic case; the stronger the magnetic
field, the steeper is the tail of the PDF.
We can understand this behaviour qualitatively
by investigating the influence of the parameter
a. Although a is introduced as a simple mathe-
matical device, to match the approximate func-
tion (equation 3) to the true collapse solution,
we can mimic other physical effects by changing
its value.
For a > 3.2233 (steeper slope), the collapse is
delayed initially, but speeds up towards the end.
This is qualitatively what happens in marginally
unstable density regimes, where the early phase
of the collapse is still influenced by stabilising
effects like thermal pressure or magnetic fields.
Conversely, the tail is shallower if collapse is
faster than pure free-fall. This is the case in
converging flows, where the collapse does not
start with zero velocity, but instead with an ini-
tial converging velocity field.

Application to Observational Data

Converting the volume density PDF to a column
density PDF (dA/dΣ), we can derive a relation
between the slopes,

µ ≡ d log V

d log ρ
, η ≡ d logA

d log Σ
, µ =

3η

2− η . (7)

µ

η

free-fall

accelerated

retarded

-2
-1.9
-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2
-1.1
-1

-3.5 -3 -2.5 -2 -1.5 -1

Using the slope of the column density
PDF, we can determine how close ob-
served structures are to free-fall collapse.
The shaded area corresponds to observations
by Kainulainen et al. (2009) and Schneider at
al. (2012) and suggests that these star-forming
cores are collapsing roughly in free-fall.

'

&

$

%

References

Collins, D. C., et al. 2012, ApJ, 750, 13
Collins, D. C., et al. 2011, ApJ, 731, 59
Federrath, C., & Klessen, R. S. 2012, ApJ
Hunter, C. 1962, ApJ, 136, 594

Kainulainen, J., et al. 2009, A&A, 508, L35
Klessen, R. S. 2000, ApJ, 535, 869
Padoan, P., et al. 1997, MNRAS, 288, 145
Schneider, N., et al. 2012, A&A, 540, L11

Slyz, A. D., et al. 2005, MNRAS, 356, 737
Tohline, J. E. 1982, Fund. Cosmic Phys., 8, 1
Vazquez-Semadeni, E. 1994, ApJ, 423, 681


